Bromelain modulates T cell and B cell immune responses in vitro and in vivo.

نویسندگان

  • C R Engwerda
  • D Andrew
  • A Ladhams
  • T L Mynott
چکیده

The ability to modulate immune responses is a major aim of many vaccine and immunotherapeutic development programs. Bromelain, a mixture of cysteine proteases, modulates immunological responses and has been proposed to be of clinical use. However, the identity of the immune cells affected by bromelain and the specific cellular functions that are altered remain poorly understood. To address these shortcomings in our knowledge, we have used both in vitro and in vivo immunological assays to study the effects of bromelain. We found that bromelain enhanced T cell receptor (TCR) and anti-CD28-mediated T cell proliferation in splenocyte cultures by increasing the costimulatory activity of accessory cell populations. However, despite increased T cell proliferation, bromelain concomitantly decreased IL-2 production in splenocyte cultures. Additionally, bromelain did not affect TCR and CD28-induced proliferation of highly purified CD4+ T cells, but did inhibit IL-2 production by these cells. In vivo, bromelain enhanced T-cell-dependent, Ag-specific, B cell antibody responses. Again, bromelain induced a concomitant decrease in splenic IL-2 mRNA accumulation in immunized mice. Together, these data show that bromelain can simultaneously enhance and inhibit T cell responses in vitro and in vivo via a stimulatory action on accessory cells and a direct inhibitory action on T cells. This work provides important insights into the immunomodulatory activity of bromelain and has important implications for the use of exogenous cysteine proteases as vaccine adjuvants or immunomodulatory agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر تماس مستقیم سلولهایT بکر با سلولهای فیبروبلاست تحریک شده با BCG بر القای سلولهایT تنظیمی

Background: Lymph node stromal fibroblasts are interconnected with TCD4+ cells and affect their phenotype and function. Understanding the nature of these interactions under unusual conditions like infections will help to their application in control and regulation of immune responses. Materials and methods: Lymph node fibroblasts were affected in BCG primed immune environment by both in-...

متن کامل

Non-Viable Lactobacillus Casei Beneficially Modulates Poly I:C Immune Response in Co-Cultures of Human Cells

  Background: Polyinosinic:polycytidylic acid (Poly-IC) has been used as a viral stimulus to mimic in vivo and in vitro infection induced by some viruses. Objective: To determine whether non-viable Lactobacillus casei CRL431 (LcM) can modulate the immune response induced by Poly I:C in co-culture models of peripheral blood mononuclear cells (PBMC) and A549 cells. Methods: T and NK cell activati...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Low Dose of Lenalidomide Enhances NK Cell Activity: Possible Implication as an Adjuvant

Background: Lenalidomide, a synthetic immunomodulatory drug, has a wide range of features including anti-angiogenic and anti-proliferative properties. To date, researchers have shown that lenalidomide is capable of ameliorating the immune system factors and antitumor responses. Most researchers have reported that lenalidomide enhances the immune response in certain cancer patients through sever...

متن کامل

Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3)

Objective(s): As T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune regulatory molecule; its blocking or stimulating could alter the pattern of immune response towards a desired condition. Based on the unique features of nanobodies, we aimed to construct an anti-TIM-3 nanobody as an appropriate tool for manipulating immune responses for future therapeutic purposes. Materials and Meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular immunology

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 2001